PARTIAL FRACTION DECOMPOSITION

USE: rational functions when degree of numerator < degree of denominator. If degree of numerator \geq degree of denominator, do polynomial division first.
A. DISTINCT LINEAR FACTORS: example: $\frac{5 x-2}{x^{3}-4 x}$

1. Factor and separate denominator. Numerators are variables representing constants, denominators are linear expressions (factors of original denominator).

$$
\text { ex. } \frac{5 x-2}{x^{3}-4 x}=\frac{A}{x}+\frac{B}{x+2}+\frac{C}{x-2}
$$

2. Multiply both sides by least common denominator (LCD).

$$
\text { ex. } \quad 5 x-2=A(x+2)(x-2)+B x(x-2)+C x(x+2)
$$

3. Function has domain of $\mathfrak{R}-\mathbf{0 , - 2 , 2}$ so substitute those values in for x.
ex. for $\mathbf{x}=\mathbf{0}$ equation in step 2 becomes $-\mathbf{2}=-\mathbf{4 A}$ so $\mathbf{A}=1 / 2$
for $x=-2$ equation in step 2 becomes $-12=8 B$ so $B=-3 / 2$
for $\mathbf{x}=\mathbf{2}$ equation in step 2 becomes $\mathbf{8}=\mathbf{8 C}$ so $\mathbf{C}=\mathbf{1}$
4. Substitute A, B, and C into equation in step 1 to get:
ex. $\frac{5 x-2}{x^{3}-4 x}=\frac{1 / 2}{x}+\frac{-3 / 2}{x+2}+\frac{1}{x-2}=\frac{1}{2 x}-\frac{3}{2 x+4}+\frac{1}{x-2}$

B. REPEATED LINEAR FACTORS: example: $\frac{2 \mathrm{x}}{(\mathrm{x}-1)^{3}}$

1. Decompose denominator into progression of linear factor(s) with increasing exponents up to original exponent. Numerators are variables representing constants.
ex. $\quad \frac{2 x}{(x-1)^{3}}=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{(x-1)^{3}}$
2. Multiply both sides by $L C D$. ex. $2 x=A(x-1)^{2}+B(x-1)+C$
3. Original equation has domain of $\mathfrak{\Re - 1}$ so substitute 1 in for x.
ex. for $\mathbf{x}=\mathbf{1}$ equation in step 2 becomes $\mathbf{2}=\mathbf{C}$
4. Substitute any other numbers you wish into equation of step 2 to get equations involving A and B. Use easy numbers like $\pm 1,0$, etc. Result will be two equations with two variables. Solve these equations simultaneously to get values for A and B.
ex. for $\mathbf{x}=-\mathbf{1}$ and $\mathbf{C}=\mathbf{2}$, equation in step 2 becomes $-2=\mathbf{4 A}-\mathbf{2 B}+\mathbf{2}$
ex. for $\mathbf{x}=\mathbf{0}$ and $\mathbf{C}=\mathbf{2}$, equation in step 2 becomes $\mathbf{0}=\mathbf{A}-\mathbf{B}+\mathbf{2}$

Solving these two equations simultaneously gives $\mathbf{A}=\mathbf{0}$ and $\mathbf{B}=\mathbf{2}$
5. Substitute A, B, and C into equation in step 1 to get:
ex. $\frac{2 x}{(x-1)^{3}}=\frac{0}{x-1}+\frac{2}{(x-1)^{2}}+\frac{2}{(x-1)^{3}}=\frac{2}{(x-1)^{2}}+\frac{2}{(x-1)^{3}}$
C. DISTINCT LINEAR AND QUADRATIC FACTORS: example: $\frac{x^{2}+3 x-1}{(x+1)\left(x^{2}-2\right)}$

1. Decompose denominators by factoring. Linear denominators have constant numerators, quadratic denominators have linear numerators.
ex. $\frac{x^{2}+3 x-1}{(x+1)\left(x^{2}-2\right)}=\frac{A}{x+1}+\frac{B x+C}{x^{2}-2}$
2. Multiply both sides by LCD. ex. $x^{2}+3 x-1=A\left(x^{2}-2\right)+(B x+C)(x+1)$
3. Substitute integer values not in domain
ex. for $\mathbf{x}=-1$ equation in step 2 becomes $\mathbf{3}=\mathbf{A}$
4. Substitute any other numbers you wish into equation of step 2 to get values for B and C. Use easy numbers like $\pm 1,0$, etc.
ex. for $\mathbf{x}=\mathbf{0}$ and $\boldsymbol{A}=3$, equation in step 2 becomes $\boldsymbol{C}=5$
ex. for $\mathbf{x}=\mathbf{1}, \boldsymbol{A}=\mathbf{3}$, and $\boldsymbol{C}=5$, equation in step 2 becomes $B=-2$
5. Substitute A, B, and C into equation in step 1 to get:

$$
\text { ex. } \frac{x^{2}+3 x-1}{(x+1)\left(x^{2}-2\right)}=\frac{3}{x+1}+\frac{-2 x+5}{x^{2}-2}
$$

D. ALTERNATIVE METHOD FOR LINEAR AND QUADRATIC FACTORS
 Do \#1 and \#2 as above (Linear and Quadratic Factors)

3. Multiply out equation from step \#2 and collect like terms:

$$
\begin{aligned}
& x^{2}+3 x-1=A x^{2}-2 A+B x^{2}+B x+C x+C \\
& \quad \text { equate coefficients of like powers on left and right } \\
& 1 x^{2}+3 x-1=(A+B) x^{2}+(B+C) x+(C-2 A)
\end{aligned}
$$

4. so $\mathrm{i}: 1=\mathrm{A}+\mathrm{B}, \mathrm{ii}: \mathbf{3}=\mathrm{B}+\mathrm{C}$, iii : $-1=\mathrm{C}-2 \mathrm{~A}$

Solve as simultaneous equations to find $\mathbf{A}=\mathbf{3}, \mathbf{B}=-\mathbf{2}, \mathbf{C}=\mathbf{5}$
5. Substitute A, B, and C in equation from step 1 above.

